首页> 外文OA文献 >Spectral Clustering: An empirical study of Approximation Algorithms and its Application to the Attrition Problem
【2h】

Spectral Clustering: An empirical study of Approximation Algorithms and its Application to the Attrition Problem

机译:谱聚类:近似算法和算法的实证研究   它在磨损问题中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clustering is the problem of separating a set of objects into groups (calledclusters) so that objects within the same cluster are more similar to eachother than to those in different clusters. Spectral clustering is a nowwell-known method for clustering which utilizes the spectrum of the datasimilarity matrix to perform this separation. Since the method relies onsolving an eigenvector problem, it is computationally expensive for largedatasets. To overcome this constraint, approximation methods have beendeveloped which aim to reduce running time while maintaining accurateclassification. In this article, we summarize and experimentally evaluateseveral approximation methods for spectral clustering. From an applicationsstandpoint, we employ spectral clustering to solve the so-called attritionproblem, where one aims to identify from a set of employees those who arelikely to voluntarily leave the company from those who are not. Our study shedslight on the empirical performance of existing approximate spectral clusteringmethods and shows the applicability of these methods in an important businessoptimization related problem.
机译:聚类是将一组对象分成多个组(称为簇)的问题,这样同一聚类中的对象彼此之间的相似性高于不同聚类中的对象。频谱聚类是一种众所周知的聚类方法,它利用数据相似性矩阵的频谱执行此分离。由于该方法依赖于解决特征向量问题,因此对于大型数据集,计算量很大。为了克服这个限制,已经开发了一种近似方法,旨在减少运行时间,同时保持准确的分类。在本文中,我们总结和实验评估了光谱聚类的几种近似方法。从应用程序的角度来看,我们采用频谱聚类来解决所谓的损耗问题,该目标旨在从一组员工中识别哪些人可能自愿离开公司,哪些人则自愿离开公司。我们的研究揭示了现有近似光谱聚类方法的经验性能,并显示了这些方法在与业务优化相关的重要问题中的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号